SBRI Stem-cell and Brain Research Institute - France (Lyon)

CORTEX conferences by Sabine Kastner & Zoltan Molnar Headline News

Date event : December 17, 2018 - 4:00pm Conference / Talk Published on 12/07/2018 - 3:42pm

Neural dynamics of the primate attention network

Sabine Kastner

Princeton Neuroscience Institute


The  selection  of  information  from  cluttered sensory  environments  is  one  of  the  most  fundamental cognitive operations performed by the primate brain. This process engages a large-scale network that consists of multiple nodes, distributed across cortical and subcortical regions. The lecture will focus on temporal  dynamics  within  this  network  that  shape  both  the  sampling  of  and  responses  to  our environment,  with  an  emphasis  on  thalamo-cortical  interactions.  The  lecture  will  also  discuss  the importance of comparative electrophysiology and neuroimaging in human and monkey brains.



Evolution of mammalian neocortical development

Zoltán Molnár

Department of Physiology, Anatomy and Genetics; University of Oxford


The   mammalian   neocortex   appeared   through   changes   of   the   developmental   programs   of neurogenesis,  neuronal  migration  and  circuit  assembly  that  diverged  in  mammalian,  reptilian  and avian brains. We are interested in the shared and distinct developmental processes and review recent comparative  developmental  and  transcriptomic  data  to  identify  divergent  features  as  key  triggers neocortical  evolution.  We  identified  tangential  migratory  streams  in  the  mammalian  cortex  that delivered  novel  populations  of  early  generated  glutamatergic  neurons,  but  did  not  identify  such tangentially migrating populations in the avian brain (1-3).  We observed de novo generation of cortical neurons from fate restricted cortical progenitors that form the  interhemispehric  connections  through  the  corpus  callosum  in  mouse,  but  not  in  chick  (4).  We recognized secondary proliferative domains with novel progenitors with specific fate restrictions that increased neurogenesis (5-6). Modelling parameters and relative proportions of proliferative periods helped us to identify the key factors responsible for increase in mammalian brain size (7). Comparisons of  transcriptomes  from  selected  brain  regions  in  various  species  revealed  considerable  divergence between cell populations with developmental homologies (8). As a consequence of the above changes, the mammalian  dorsal  pallium  is  unique;  it  is  populated  by  diverse  neuronal  populations  that  are generated  according  to  a  strict  temporal  sequence,  neurons  are  arranged  into  layers  and  radial modules that communicate between the two hemispheres.

(1) Pedraza et al., (2014) PNAS U S A. 111(23):8613-8.
(2) García-Moreno et al., (2018) Cell Rep. 22(1):96-109.
(3) Rueda-Alaña et al., (2018) Front Neurosci. 12:792.
(4) García-Moreno and Molnár (2015) PNAS U S A. 112(36):E5058-67.
(5) García-Moreno et al., (2012) Cereb Cortex. 22(2):482-92.
(6) Vasistha et al., (2015) Cereb Cortex. 25(10):3290-302.
(7) Picco et al., (2018) Cereb Cortex. 28(7):2540-2550.
(8) Belgard et al., (2013) PNAS U S A. 110(32):13150–13155.
(9) Lein et al., (2017) Annu Rev Neurosci. 40:629-6


Monday December 17th, 4pm, SBRI Conference room.

Invited by Henry Kennedy